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In the present paper some quantitative estimations of
Using a nonintegral expansion method of screened potentials the screening effect of the crystal-field potential generated

about a displaced center (by a) the intrinsic crystal-field terms by the three basic multipoles (monopole, dipole, and quad-
generated by the point charge, dipole, and quadrupole moments rupole), within the frame of the Thomas–Fermi model,
of a ligand have been quantitatively estimated. The calculation are presented using a nonintegral expansion method (6)
has been performed within the Thomas–Fermi model for the of f(R)YM

L (u, f) functions about a displaced center. The
screening radius 1/l $ a/3. In contrast to an almost total results are given directly in the real coordinate space which
attenuation of the monopole component (of no contribution to

is convenient from the crystal-field theory point of viewthe crystal-field splitting) the screening efficiency for higher
whereas the approaches preferred by the solid state physi-crystal-field terms regularly drops. The screening factor for the
cists, based on the dielectric constant formalism, are givenfourth-order terms does not exceed 0.5 and that for the sixth-
in the Fourier representation (7, 8).order, 0.3. In the case of the second-order crystal-field terms

The estimation has been carried out for the screeninga particular situation is observed. Their screening factor for the
point-charge potential reaches 0.6 for la 5 3 but contributions radius 1/l $ a/3, where l is the screening constant and a
generated by the dipole and quadrupole components are several the distance between the neighboring lattice sites or be-
times enhanced. This fact may explain some interpretation tween the central atom (ion) and its ligand. For the smallest
difficulties occurring often in the case of the second-order pa- value of the considered screening radius (1/l 5 a/3) an
rameters and concerning both their magnitude and sign.  1996 almost complete attenuation of the spherically symmetric
Academic Press, Inc. term of the ligand-field potential is observed. As a matter of

fact, the spherically symmetric potential about the central
atom generated by a point charge of the ligand (Ze) hasINTRODUCTION
then the form (Ze/r) exp(23), where r is the distance from
the central atom.Both the parameterization of the crystal-field potential

A rigid linear system (central atom–ligand) is consideredand the quantitative expressions for the parameters within
in the paper. The corresponding intrinsic crystal-field pa-the point-charge model are derived from expansion of a
rameters can be calculated by averaging the obtained po-monopole (the point charge) potential about a displaced
tentials over the radial distribution of unpaired electronscenter. This multipole expansion holds a more general
of the central atom.meaning and is commonly used for both phenomenological

and ab initio parameterizations of generalized crystal-field
potentials. Analogous expansions for other potentials, e.g.,
for higher multipoles, bare or screened, are not easily avail-

THE NONINTEGRAL EXPANSION METHOD OFable in a compact direct form (1) which makes even a
f (R)Y M

L (u, f) FUNCTIONS ABOUT Aqualitative recognition of the shielding role of conduction
DISPLACED CENTERelectrons in the crystal-field effect difficult. Up to now,

there is a symptomatic partition of the opinions among
1. Translational Transformation of the Barecrystal-field model users about this role—from attributing

Multipole Momentsthem a minimal shielding role (2, 3) to a strong anti-
shielding one, reversing the sign of the simple point-charge The nonintegral expansion method of f(R)YM

L (u, f)
functions about a displaced center presented thoroughlymodel parameters (4, 5).
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in (6) makes use of a relatively simple and close formula M 0
2Y 0

2(u, f)
R3 5 6M 0

2
r2

a5 Y 0
2(q, w)for the transformation of the multipole moments of charac-

teristic radial dependence R2(L11)YM
L (u, f) for a parallel

shift of the reference system along the z axis 1 5(5)1/2M 0
2

r4

a7 Y 0
4(q, w)

1 28 S 5
13D1/2

M 0
2

r6

a9 Y 0
6(q, w) [5]YM

L (u, f)
RL11 5 O

l
(21)l1m(2L 1 1)

M61
2 Y61

2 (u, f)
R3 5 24M61

2
r2

a5 Y61
2 (q,w)F (2l 1 2L 1 1)!

(2L 1 1)!(2l 1 1)!G1/2

[1]

2 10 S2
3D1/2

M61
2

r4

a7 Y61
4 (q, w)S l L l 1 L

2m M m 2 M
D rl

al1L11 Y m
l (q, w),

2 8 S35
13D1/2

M61
2

r6

a9 Y61
6 (q, w) [6]

where the R, u, f coordinates and L, M indices refer to M62
2 Y62

2 (u, f)
R3 5 M62

2
r2

a5 Y62
2 (q, w)the initial coordinate system centered at the ligand and r,

q, w and l, m to the system shifted along the Z 5 z axis
by a (hence u 5 q and M 5 m); the factor within the round

1 5 S1
3D1/2

M62
2

r4

a7 Y62
4 (q, w)parentheses is a 3-j symbol.

In the present paper the contribution of only the three
basic moments (L 5 0, 1, 2), monopole, dipole, and quadru-

1 5 S14
13D1/2

M62
2

r6

a9 Y62
6 (q, w). [7]

pole, respectively, is considered. A formal extension for
the higher multipoles is obvious. Thus, the pure multipole
potentials become transformed as follows: In the expansions given above only the components which

are effective from the crystal-field parameterization point
of view, i.e., those of l 5 2, 4 and 6, are shown. Ze denotes
the point charge of the ligand and M6M

L the correspondingZe
R

5 S4f
5 D1/2

Ze
r2

a3 Y 0
2(q, w)

components of its dipole and quadrupole moments.
Equation [2] constitutes the essence of the point-charge

model. The contributions of the higher multipole moments1 S4f
9 D1/2

Ze
r 4

a5 Y 0
4(q, w)

(Eq. [3]–[7]) decay with higher powers of a, e.g., by 1 for
dipole, by 2 for quadrupole, etc. For L 1 M odd, the
expansion coefficients are negative, for even, they are posi-1 S4f

13D1/2

Ze
r6

a7 Y 0
6(q, w) [2]

tive. For fixed L, their absolute values are largest for the
axial components and decrease regularly when uMu rises.
The radial distribution (within the shifted system) of a

M 0
1Y 0

1(u, f)
R2 5 23 S3

5D1/2

M 0
1

r2

a4 Y 0
2(q, w)

component of the angular part Y m
l (q, w) is simply rl/al1L11.

2 5 S1
3D1/2

M 0
1

r4

a6 Y 0
4(q, w) 2. Translational Transformation of the Screened

Multipole Moment

The method of the translational transformation of f(R)2 7 S 3
13D1/2

M 0
1

r6

a8 Y 0
6(q, w) [3]

YM
L (u, f) functions for other than the multipolar radial

dependence (Eq. [1]), e.g., the screened multipole mo-
ments, is arranged in the three following steps:

M61
1 Y61

1 (u, f)
R2 5 3 S1

5D1/2

M61
1

r2

a4 Y61
2 (q, w)

(i) factorizing the function f(R)Y M
L (u, f) according to

the scheme1 S10
3 D1/2

M61
1

r4

a6 Y61
4 (q, w)

f(R)YM
L (u, f) 5 SO

K
aKRKD R2(L11)YM

L (u, f), [8]1 3 S13
7 D1/2

M61
1

r6

a8 Y61
6 (q, w) [4]
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where aK are the expansion coefficients of the f (R) func- from the distinguished area takes place until the equaliza-
tion of the Fermi level. If dU(R) is small, the local densitytion into the power series in the initial coordinate system,

(ii) using the transformation relations for each aKRK of the electrons n(R) changes approximately by
factor and R2(L11)YM

L (u, f) separately, as in example (6)
dn(R) 5 2N(EF)dU(R), [12]

where N(EF) is the density of states at the Fermi level.R 5Oy
l50
S 4f

2l 1 1D1/2F 1
2l 1 3

rl12

al11 2
1

2l 2 1
rl

al21GY 0
l (q, w) [9]

Consequently, the potential U(R) (we write U instead of
dU for simplification) has to obey the Poisson equation

R2 5 (4f)1/2(a2 1 r2)Y 0
0(q, w)

DU(R) 5 24fe2dn(R) 5 4fe2N(EF)U(R)
[13]2 2ar S4f

3 D1/2

Y 0
1(q, w) [10]

5 l2U(R),

where l denotes the Thomas–Fermi wave vector and con-R3 5 Oy
l50
S 4f

2l 1 1D1/2F 3
(2l 1 3)(2l 1 5)

rl14

al11
sequently the so called screening radius is equal to 1/l.
Making use of the density of states at the Fermi surface

2
6

(2l 2 1)(2l 1 3)
rl12

al21 N(EF) 5 mkF/("2f2) we get

1
3

(2l 2 1)(2l 2 3)
rl

al23G Y 0
l (q, w) [11] l 5 S 16

3f2D1/3Srs

a0
D1/2

kF 5
2.95

(rs/a0)1/2 Å21, [14]

where kF is the Fermi wave vector, rs is the radius of a(In the case of R2(L11)YM
L (u, f) function, see Eq. [1]), and

sphere of volume due to individual conduction electron,(iii) reducing the simple products of the type
and a0 5 "2/(me2) 5 0.529 ? 1028 cm is the Bohr radius. TheY m1

l1 (q, w) ? Y m2
l2 (q, w) into the irreducible representations

dimensionless parameter rs/a0 varies for metallic elementsY m
l (q, w) which give the desired expansion.

from 2 to 6 whereas for intermetallic compounds it reaches
even 10.

Thus, the problem lies in the solution of a linear second-
THE THOMAS–FERMI SCREENING order differential equation:

The screening phenomenon in electron-gas theory is a DU(R) 5 l2U(R). [15]
symptom of the reaction of a degenerate fermion system
to an external perturbation. In the crystal-field context the In the spherical coordinate system the equation takes the
bare potential of the surrounding lattice sites (mainly the following detailed form:
ligands) is the perturbation. Generally, the response of the
system is characterized by the same wave vector (q) and
the same frequency (g) as the perturbation. Within the (q, F 1

R2

­

­R SR2 ­

­RD1
1

R2 sin u

­

­u
Ssin u

­

­u
D

[16]g) representation the screening effect is ordinarily ex-
pressed by means of dielectric constant «(q, g). The corre-

1
1

R2 sin u

­2

­f2GU(R) 5 l2U(R).sponding picture in the space coordinate–time representa-
tion can be found through the Fourier transformation
(9–11). Ignoring the lattice vibrations, the static field, g 5

The Fourier method of separation of variables leads to0, is assumed.
the solutionsThe Thomas–Fermi approximation is the long-wave

(q R 0) variant of the linear Lindhard approach which is
U(R) 5 R(R)Y6M

L (u, f), [17]equivalent, in turn, to the random phase approximation
(RPA). The postulated slow-variability of the perturbing

where Y6M
L (u, f) are the spherical harmonics, L, M arepotential allows us to derive the Thomas–Fermi approxi-

integers with L $ uMu, and R(R) is a radial function fulfill-mation in a simple and direct way although equivalent
ing the equationto other approaches. A perturbing potential dU(R) (the

resultant, self-consistent one) at point R rises locally the
Fermi distribution by dU(R) too. Since the chemical poten- R2 ­2R

­R2 1 2R
­R

­R
2 l2R2R 2 L(L 1 1)R 5 0. [18]

tial is constant in the whole volume, an outflow of electrons
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Equation [18] can be solved by expansion of the R(R) to zero and in consequence all the odd coefficients are
related also with Eq. [23]. Since the solution for thefunction into power series of R. However, considering the

point R 5 0 to be a singular one (although regular) the screened monopole potential, (Ze/R) exp(2lR), is known,
the constant c1 is equal to 2lZe. Using Eqs. [19] andexpansion begins with a certain K ? 0 exponent (12)
[23] the following radial functions RL(R) of the screened
multipoles have been obtained:R(R) 5 c0RK 1 c1RK11 1 c2RK12 1 ? ? ? . [19]

Let’s start from the solution for l 5 0 (an unscreened
L 5 0, R0(R) 5

Ze
R S1 2 lR 1

1
2

l2R2 2
1
6

l3R3 1 . . .Dsystem), in other words, from the well known solution
of the Laplace equation. Then, the so-called indication
equation involving the coefficients at the terms of the low- 5

Ze
R

exp(2lR) [24]
est exponent, i.e., K in this case, has the form

L 5 1, R6M
1 (R) 5

M6M
1

R2 S1 2
1
2

l2R2 2
1
8

l4R4 2
1

144
l6R6

c0RK[K(K 2 1) 1 2K 2 L(L 1 1)] 5 0 [20]

and is fulfilled either for K 5 L or K 5 2(L 1 1). Only
2

1
144 ? 40

l8R8 2 . . .D [25]
the second solution has physical meaning; i.e., it decays
with the distance naturally. As it results from all the re-
maining equations for coefficients at succeeding powers of L 5 2, R6M

2 (R) 5
M6M

2

R3 S1 2
1
6

l2R2 1
1

24
l4R4

R all cn 5 0 if n ? 0. Exceptionally for L 5 0 the coefficient
c1 could be different from zero, being an arbitrary constant.

1
1

144
l6R6 1

1
144 ? 24

l8R8 1 . . .D.However, it is well known that this case corresponds to
the point-charge potential and c1 5 0 ought to be taken.

[26]Hence, the permissible solutions of Eq. [15] for l 5 0 have
the form of components of the multipole moments:

Only in the case of monopole is the modification factor
(in parentheses of Eq. [24]) a fully alternate series. In theU(R) 5 c0R2(L11)Y6M

L (u, f). [21]
remaining cases, all terms, starting from a certain degree,
are either negative (for L odd) or positive (for L even). The

For L 5 0, c0 5 Ze; for L ? 0, c0 5 M6M
L . screened monopole potential decays exponentially with R.

In the case of the screening, i.e., for l ? 0, the angular The radial dependences for the screened higher multipole
part of the solution remains invariable whereas the radial potentials are not so simple, especially for larger l when
part undergoes an alteration. The indication equation is the absolute value of the modification factor may exceed
the same as the previous one (Eq. [20]) and similarly the 1. It is understood that the response of the system con-
solution with K 5 2(L 1 1) is physically acceptable. sisting in activation of local charge density of conduction

For L ? 0 only the coefficients cn(n 5 0, 2, 4, . . .) of electrons (through the Poisson equation) is characterized
even indices are different from zero. They are defined by by a different radial dependence than that for the per-
the recurring formula turbing potential. The series form of the solution obtained

is convenient from the point of view of the translational
transformation method applied.cn 5

l2cn22

(K 1 n)(K 1 n 1 1) 2 L(L 1 1)
[22]

RESULTS
which after substituting the value K 5 2(L 1 1) takes
the form Applying the nonintegral expansion method to the series

expansions of the screened multipole potentials (Eqs. [17]
and [24]–[26]) gives directly the effective components ofcn 5

l2cn22

22nL 1 n2 2 n
. [23]

the crystal-field potential at the central atom site. The
screening effect for la 5 1, 2, and 3 is quantitatively esti-
mated. To this end a sufficient accuracy is achieved forOn the other hand, all odd coefficients starting from c1

vanish. expansions (Eq. [24]–[26]) up to twelfth, sixth, and eighth
degree with respect to lR for monopole, dipole, and quad-A particular situation takes place for L 5 0, i.e., for the

screened point-charge potential. Then, the coefficient c1 rupole, respectively. It may be checked up directly.
Here is a good place to specify certain restrictions con-does not have to be equal to zero. For K 5 21 the factor

at c1 in the equivalent of the indication equation is equal cerning r, i.e., the distance measured from the displaced
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center (the central atom). From the point of view of the
crystal-field effect when we are interested in the influence 1 S4f

13D1/2

Ze
r6

a7 S1 2 FSl2a2

22
2

l2r2

30 D1 S2
l4a4

792of a ligand potential on the internal electrons of the central
atom, an assumption r , a/2 seems to be reasonable. De-
tailed calculations (see below) show that the radial distri- 1

l4a2r2

660 D1 S l6a6

33,264DGJY0
6(q, w)

bution of the screened multipole potentials about a dis-
placed center has the form rl/al1L11[1 2 s(l, a, r)] and
the screening factor s(l, a, r) within the whole range 0 , M0

1Y0
1(u, f)
R2 S1 2

1
2

l2R2 2
1
8

l4R4 2
1

144
l6R6Dr , a/2 varies slightly with r, being determined by a rather.

The intrinsic crystal-field parameters are calculated by
means of averaging the above radial parts of the potential

P 23S3
5D1/2

M0
1

r2

a4 H1 2 FSl2a2

18
2

l2r2

14 D1 Sl4a4

72over the radial distribution of unpaired electrons of the
central atom. The same averaging of the s(l, a, r) factor
itself leads to the proper value of the snl(l, a) factor for

1
l4a2r2

252 D1 Sl6a6

144
1

l6a4r2

1008 DGJY0
2(q, w)

the specified unpaired electrons (nl).
To compare the screening effect the screening factor has

been calculated for a representative distance r 5 a/3. The 2 5S1
3D1/2

M0
1
r4

a6 H1 2 FS3l2a2

70
2

l2r2

22 D1 S2
l4a4

1400detailed results are given below. Only these terms in the
s(l, a, r) factors which are .0.01 for the limitations as-
sumed (la # 3, r 5 a/3) are specified. Within the round 1

3l4a2r2

1540 D1 S2
l6a6

25,200DGJY0
4(q, w)

parentheses only the important components of the homo-
geneous polynomials of succeeding degrees with respect
to ar are shown. 2 7S 3

13D1/2

M0
1

r6

a8 H1 2 FS5l2a2

154
2

l2r2

30 D
1 S2

l4a4

1848DGJY0
6(q, w)

Ze
R O12

n50

(21)n

n!
(lR)n P S4f

5 D1/2

Ze
r2

a3 H1 2 FSl2a2

6
2

l2r2

14 D
M11

1 Y61
1 (u, f)
R2 S1 2

1
2

l2r2 2
1
8

l4R4 2
1

144
l6R6D

1 S2
l4a4

24
1

l4a2r2

84 D1 Sl5a5

45 D
P 3S1

5D1/2

M61
1

r2

a4 H1 2 FSl2a2

6
2

l2r2

14 D1 S2
l4a4

241 S2
l6a6

144
2

l6a4r2

336 D1 Sl7a7

630
1

l7a5r2

630 D1 S2
l8a8

3456

1
l4a2r2

84 D1 S2
l6a6

144
2

l6a4r2

336 DGJY61
2 (q, w)

2
l8a6r2

2016 D1 S l9a9

22,675
1

l9a7r2

8820
1

l9a5r4

22,675D
1 S10

3 D1/2

M61
1

r4

a6 H1 2 FSl2a2

14
2

l2r2

22 D1 S2
l4a4

2801 S2
l10a10

172,800
2

l10a8r2

48,384D1 S l11a11

1,496,880
1

l11a9r2

317,520D
1

l4a2r2

308 D1 Sl6a6

5040DGJY61
4 (q, w)

1 S2
l12a12

14,515,200
2

l12a10r2

2,419,200DGJY0
2(q, w)

1 3S13
7 D1/2

M61
1

r6

a8 H1 2 FSl2a2

22
2

l2r2

30 D1 S2
l4a4

7921 S4f
9 D1/2

Ze
r4

a5 H1 2 FSl2a2

14
2

l2r2

22 D1 S2
l4a4

280

1
l4a2r2

660 D1 S l6a6

33,264DGJY61
6 (q, w)

1
l4a2r2

308 D1 Sl6a6

5040
2

l6a4r2

6160 D
M0

2Y0
2(u, f)
R3 S1 2

1
6

l2R2 1
1
24

l4R4 1
1

144
l6R6 1

1
3456

l8R8D1 S2
l8a8

40,320D1 S l9a9

99,225D1 S2
l10a10

403,200D
1 S l11a11

2,182,950D1 S2
l12a12

14,515,200DGJY0
4(q, w) P 6M0

2
r2

a5 H1 2 FSl2a2

18
2

l2r2

14 D1 S2
l4a4

216
1

l4a2r2

252 D
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1 S2
l6a6

432
2

l6a4r2

3024 D1 S2
l8a8

3456DGJY0
2(q, w) 1

l4a2r2

308 D1 Sl6a6

5040DGJY62
4 (q, w)

1 5S14
13D1/2

M62
2

r6

a9 H1 2 FSl2a2

22
2

l2r2

30 D1 S2
l4a4

792
1 5(5)1/2M0

2
r4

a7 H1 2 FS5l2a2

126
2

l2r2

22 D1 S2
13l4a4

12,600

1
5l4a2r2

2772 D1 S l6a6

25,200DGJY0
4(q, w) 1

l4a2r2

660 DGJY62
6 (q, w)

1 28S 5
13D1/2

M0
2

r6

a9 H1 2 FSl2a2

33
2

l2r2

30 D The screening factors s(l, a, r), i.e., the expressions given
in the square parentheses of the above formulas, calculated
for la 5 1, 2, and 3 and r 5 a/3, are compiled in Table 1.1 S2

l4a4

1848DGJY0
6(q, w)

DISCUSSION
M61

2 Y61
2 (u, f)
R3 S1 2

1
6

l2R2 1
1
24

l4R4 1
1

144
l6R6

The results presented in Table 1 are instructive. Taking
into account a high efficiency of free conduction electrons
in suppression of the spherically symmetric part of the1

1
3456

l8R8D
potential (Y0

0), one might expect that the higher compo-
nents forming the crystal-field potential are also seriously
reduced. In handbooks we can find a statement that anP 24M61

2
r2

a5 H1 2 FSl2a2

12
2

l2r2

14 D1 Sl4a2r2

168 D
external perturbation of large wavelength (in its Fourier
picture) is almost entirely screened by flow of movable
electrons (10), in other words, for q R 0 the dielectric1 Sl6a6

288D1 Sl8a8

3456DGJY61
2 (q, w)

constant « R y.
In the light of the given estimation it turns out that the

2 10S2
3D1/2

M61
2

r4

a7 H1 2 FSl2a2

21
2

l2r2

22 D screening efficiency of the ligand field components (l 5 2,
4, 6) goes down when l rises. The screening factor s, for
la # 3, does not exceed 0.5 for l 5 4 and reaches 0.3 for

1 S2
l4a4

840
1

l4a2r2

462 DGJY61
4 (q, w) l 5 6. Within the considered range of l the most interesting

situation takes place for the second order components.
Their factor s for the potential generated by the point

2 8S35
13D1/2

M61
2

r6

a9 H1 2 FS3l2a2

88
2

l2r2

30 D charge gains 0.6 (for la 5 3) indeed, but the contributions
generated by the dipole and quadrupole moments of the
ligand are several times enhanced.

1 S2
l4a4

1584
1

l4a2r2

880 DGJY61
6 (q, w) Even taking into account a typical hierarchy of the

contributions, i.e., a decay of the role of higher ligand
multipoles, the observed effect may thoroughly modify
the second-order crystal-field parameters. The amplifica-M62

2 Y62
2 (u, f)
R3 S1 2

1
6

l2R2 1
1
24

l4R4 1
1

144
l6R6 tion of the contributions generated by YM

L components
of L 1 M odd alters the sign of the bare unscreened
contributions whereas for L 1 M even the sign is

1
1

3456
l8R8D preserved. The resultant parameter may be different

depending on the magnitude and sign of Ze charge and
M6M

L components. This possibility of algebraic summation
P M62

2
r2

a5 H1 2 FSl2a2

6
2

l2r2

14 D1 S2
l4a4

24
1

l4a2r2

84 D of the contributions originating from the point charge
potential and enhanced (regarding their absolute values)
contributions originating from the dipole and quadrupole

1 S2
l6a6

144
2

l6a4r2

336 D1 S2
l8a8

3456DGJY62
2 (q, w)

(and also higher) moments may elucidate several unac-
countable and mysterious divergences regarding the sec-
ond-order parameters met during interpretation of crys-1 5S1

3D1/2

M62
2

r4

a7 H1 2 FSl2a2

14
2

l2r2

22 D1 S2
l4a4

280 tal-field splitting schemes.
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TABLE 1 tial being a solution of the Poisson’s equation overcomes
Ligand-Field Screening Factor s for the Monopole, Dipole, completely the inducing bare potential.

and Quadrupole Components of the Ligand Potential Ac- It should be emphasized that the presented results have
cording to the Thomas–Fermi Model a pretty universal meaning. Considering the weak depen-

dence of s(l, a, r) on r/a the screening factor is determinedIntrinsic component Generating potential
mainly by the la dimensionless parameter only, i.e., byof the ligand field

potential Y0
0 Y0

1 Y61
1 Y0

2 Y61
2 Y62

2 the screening radius expressed in terms of the lattice pa-
rameter.

Y0
2 0.13 0.07 0.04 In conclusion, all limitations of the present approach

0.23 0.87 20.10
resulting from the assumptions introduced should be re-0.61 6.73 23.52
stated:

Y61
2 0.11 0.08 —Only the electrostatic contributions to the crystal-field

20.48 0.61 parameters (13) are considered. Nevertheless, joint contri-
27.14 5.16 butions of the point charge and the dipolar and quadrupo-

lar polarizations are an important part of the whole effectY62
2 0.11

(13, 14).20.55
29.04 —The presented approach deals with a central atom–

ligand static system and neglects the lattice vibrations
Y0

4 0.06 0.04 0.03 as well as the plasma oscillations of the free-electron
0.23 0.14 0.13

gas. In fact, the electrons are involved in an organized0.40 0.27 0.27
collective vibration motion of characteristic angular fre-

Y61
4 0.06 0.04 quency gp 5 [3e2/(mr3

s)]1/2. The screening effect calcu-
0.23 0.16 lated in this dynamical approach is less effective than
0.48 0.31 that for the free electrons (15, 16). Therefore we reflect

that the screening results presented in this paper areY62
4 0.06

rather overestimated.0.23
0.48 —One should remember the simplifications of the

Thomas–Fermi model itself and particularly the require-
Y0

6 0.04 0.03 0.03 ment of slow-variability of the perturbing potential. A po-
0.15 0.11 0.10

tential U(R) may be recognized as slowly variable if for0.30 0.22 0.20
an electron at point R its energy can be described in the

Y61
6 0.04 0.03 form E(k) 5 "2k2/(2m) 2eU(R) and this is reasonable if

0.15 0.11 the potential U(R) changes slightly only along distances
0.31 0.23 comparable with a typical wave packet size of the electron

which amounts p1/kF , in other words for distances of orderY62
6 0.04

a. The Thomas–Fermi approach is a long-wave (q R 0)0.15
0.29 approximation valid for potentials of the long-wave Fou-

rier spectrum. The Fourier transform of the point charge
Note. Comparative values for la 5 1, 2, 3, r 5 a/3, where l is the potential Ze/R has the form V(q) 5 4fe/q2 from which

Thomas–Fermi wave vector, a is the central atom–ligand distance, and
it is seen that the short-wave components are not veryr is the distance from the central atom. In each cell the s value in the
important. Unfortunately, for the higher multipoles theirfirst row is for la 5 1, in the second row for la 5 2, and in the third

row for la 5 3, respectively. role rises and they have a negative influence upon the
adequacy of the model.
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